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Abstract

Source camera identification finds many applications in

real world. Although many identification methods have

been proposed, they work with only a small set of cameras,

and are weak at identifying cameras of the same model.

Based on the observation that a digital image would not

change if the same Auto-White Balance (AWB) algorithm

is applied for the second time, this paper proposes to iden-

tify the source camera by approximating the AWB algorithm

used inside the camera. To the best of our knowledge, this

is the first time that a source camera identification method

based on AWB has been reported.

Experiments show near perfect accuracy in identifying

cameras of different brands and models. Besides, proposed

method performances quite well in distinguishing among

camera devices of the same model, as AWB is done at the

end of imaging pipeline, any small differences induced ear-

lier will lead to different types of AWB output. Furthermore,

the performance remains stable as the number of cameras

grows large.

1. Introduction

With the popularity of digital cameras and the ease of im-

age editing, image forensics becomes indispensable. Gen-

erally, the goal of image forensics is either authentication or

integrity validation. Authentication is to identify the source

imaging device of a given image. Integrity validation in-

volves determining whether the digital image has been mod-

ified, and if so, what kinds of manipulations are performed.

In this paper, we focus on authentication, i.e. given an input

image, identifying its source camera.

Source camera identification finds applications in many

cases. For example, when digital images are used as evi-

dence in court, it is necessary to verify the original source of

such images. Further, in the case of copyright dispute over

an image, identifying the source camera could help find the

rightful owner of the image. An apparent simple solution

is to use the EXIF (Exchangeable Image File) header of an

image [27]. However, such information is very easy to ma-

nipulate, and therefore not usable in practice.

Figure 1. Imaging pipeline in digital camera (Reproduced from

[22] with permission )

A good source camera identification solution shall rely

on the image acquisition process rather than easy-to-

manipulate meta-data. Although the detailed image ac-

quisition process is kept secret by the camera manufac-

turers, the imaging pipeline is similar among most digital

cameras (Figure 1). Light coming from the outside world

passes through the camera lens, and a series of filters, in-

cluding color filter array (CFA). Then it reaches the sensor

(CCD/CMOS), where it is converted into digital signal, and

subsequently processed by a digital image processor (DIP),

where post-processing operations are performed, including

gamma correction, demosaicking, image correction, white

balance and JPEG compression.

One way to perform camera identification is to make

use of lens distortion/aberration [2, 8, 30]. However, since

lenses are often interchangeable, this approach is not reli-

able for practical camera identification.

Another type of approach makes use of the inherent

manufacturer’s imperfection, such as defective pixels [17],

pattern noise [13, 25, 26], camera response functions [28]

or sensor dust characteristics [10, 9]. However, such ap-

proaches are often not accurate enough for real-world ap-

plications.

The third type of approaches focuses on the Digital Im-

age Processor (DIP). Due to the use of CFA, every camera

performs a demosaicking algorithm to obtain a color im-

age. To estimate the interpolation coefficients, Alin et al.

[29] assume demosaicking is a linear model, while Long
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and Huang [24] assume it to be quadratic correlation model.

However, the color demosaicking process is highly non-

linear [20], but all the above methods assume it is in near

linear form, while having no consideration of side effects of

other post-operations in DIP.

Our proposed approach falls in the third category. Rather

than focusing on demosaicking algorithms, we propose to

use automatic white balance (AWB) for camera identifica-

tion. White balance is applied all digital cameras to cor-

rect images from the color of the light source, e.g. to ensure

consistent color reproductions for images or to remove un-

natural looking color casts. To the best of our knowledge,

AWB has not been used in image forensics. Our method is

inspired by the intuition that applying AWB for the second

time would not change much to the image, since any color

cast would have been removed by the first AWB operation.

Based on this intuition, we introduce a novel source camera

identification method using AWB approximation.

Section 2 briefly explains the most common approaches

to computational white balance. Section 3 introduces our

proposed method, and section 4 describes and discusses our

experiment results. Robustness analysis of the proposed

method is given in Section 5. Finally, Section 6 presents

the conclusion.

2. Auto-White Balance Approaches (AWB)

Various qualities of the human visual system are taken

for granted without realizing it. For instance, the human

visual system is known to continuously adapt to changing

environments. This results in consistent perception of sur-

face colors (i.e. color constancy), even when these sur-

faces are observed under completely different light sources

(e.g. fluorescent or incandescent light bulbs or natural day-

light). Digital cameras attempt to reproduce these results

by applying (Automatic)White Balance to every recorded

image. Would this step be omitted, all images would have a

color cast, depending on the environment where the image

was taken. For instance, images recorded under fluorescent

lights would have a greenish cast and images under incan-

descent lights would have a yellowish cast [1].

During the process of color image formation, light re-

flected off the surfaces in a scene that reaches the sensor

of the digital camera is transformed into a color space that

can be interpreted by display devices such as monitors, usu-

ally RGB. This light is the product of the spectral surface

reflectance and the spectral power distribution of the illu-

minant. After the light reaches the sensor, transformation

is applied using three camera sensitivity functions that each

respond to specific parts of the light spectrum. White bal-

ance is defined as the problem of disentangling the effects

of the light source from the resulting RGB-image without

changing the actual contents of the image. Generally, this

problem is attacked by first estimating the color of the light

source e = (eR, eG, eB)
T (which is assumed to be spec-

trally constant across the scene), followed by transforma-

tion of the RGB-image to impose a canonical illuminant

c, usually a white light source (i.e. c = (1, 1, 1)T ). In

this section, several alternatives to estimate the illuminant

are discussed, as well as some chromatic adaptation trans-

forms.

2.1. Illuminant Estimation

Since estimation of the illuminant is an under con-

strained problem, i.e. the amount of information required to

solve the problem is larger than the amount of information

available, all existing algorithms are based on one or more

assumptions. Most commercial cameras are doing white

balance based on the best-known Gray-World assumption.

Under this assumption, the average color of an image that

is recorded under a white light source is achromatic. One

algorithm based on this assumption simply sets the color of

the light source to the average color of the image[6], as any

deviation from gray, by assumption, is caused by the illu-

minant. Alternatively, rather than computing the average of

all pixels, using only the center pixels of a segmented image

has been shown to improve the accuracy [4, 5].

Another simple yet well-known algorithm is based on

the White-Patch assumption [21]. This assumption states

that the maximum response in any image is caused by a

white patch (i.e. a perfect reflectance). A simple method,

known as Max-RGB,that utilizes this assumption computes

the maximum responses in either of the three channels R,

G and B and sets the color of the light source to this value.

In real-world images, both assumptions are likely to fail.

Therefore, Finlayson and Trezzi[15] propose to compute

a weighted average of the pixel values, assigning higher

weights to pixels with higher intensities. The weight-

function that is proposed is based on the Minkowski-norm

p, which implies that the Gray-World and the White-Patch

can be generated by using p = 1 and p = ∞, respec-

tively. Another extension of these low-level statistics-based

methods is proposed by van de Weijer et al. [31], and is

based on the Gray-Edge assumption. This method works

with derivatives of images (i.e.edges) rather than with the

original pixel-values.

2.2. Chromatic Adaptation

After the color of the light source is estimated, the im-

age can be transformed. This transformation will change

the appearance of all colors, so that the image appears to be

recorded under a white light source (e.g. D65). This can

be achieved by chromatic adaptation, e.g. [12]. Most adap-

tation transforms are modeled using a linear scaling of the

cone responses, and the simplest form independently scales
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the three color channel[14, 32]:





Rc

Gc

Bc



 =
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
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where di =
ei√

3·(e2
R
+e2

G
+e2

B
)
, i ∈ {R,G,B}.

More accurate representation includes Bradford trans-

form, CMCCAT2000, VonKries, and XYZ model, etc.[23].

3. Methodology

Any digital camera performs some kind of white balanc-

ing inside the camera. Even if users turn off AWB, the cam-

era would still perform some fixed color correction opera-

tion. Our proposed method is based on the observation that

most white balance algorithms will have little or no effect

on the image if they are applied to the image the second

time.

3.1. Theoretical Basis

Above observation illustrate the ‘idempotence’ property

of white-balance method, the theoretical basis of this pa-

per. An operation having ‘idempotence’ property, will pro-

duce the same output if executed once or multiple times, i.e.

given an image im, we have

WB(WB(im)) = WB(im) (2)

This promises that, if white-balance is the last operation

inside camera, and we happen to choose the same AWB

method as the image has undergone, the output image

would not change. For example, adjusting the image so

that the average color is gray, i.e. the Gray-World algo-

rithm, will expect the same average color. Thus applying

this method the second time will have no effect on the im-

age, since the average of the image is already set to gray.

Furthermore, we observe that the methods that are based on

the same assumption trend to produce similar results. For

example, methods based on the gray-world assumption may

receive the same illuminant estimation, thus more likely

gives similar results. Finally, we we observe that methods

based on different assumptions tends to give much larger

color changes.

There are two questions that we must address to solid

our theory. First, is the AWB performed at the end of imag-

ing pipeline? The answer is NO. Since at least, the JPEG

compression happens after it. But the lucky thing is that,

from analysis of imaging pipeline, it is reasonable to be-

lieve that some major operations in DIP happen ahead of

white-balance, including infrared rejection, gamma correc-

tion, demosaicking, lens aberration, antialiasing, etc. Also,

our experiments shows that for many images, we can find

the AWB algorithm that has little effect when performed

again. (Mean Square Error < 0.5). We attribute this differ-

ent to the image quality degradation due to JPEG compres-

sion. What is more, sometimes, for a high quality images

(compression quality ≥ 98%), we can find the exact AWB

algorithm that will be side effect free. From above, we can

reasonably assume that white-balance is performed near the

end of imaging pipeline, thus the proposed method does not

suffer the side effects from other processes applied inside

DIP.

Figure 2.Working flow of our proposed method

The second question is, how could we assure that we

have find the right AWB method? Since most digital cam-

eras include multiple AWB methods designed for different

lighting conditions. And what is worse, the actual method

that is used inside each camera is unknown. Therefore, in

this paper, instead of finding one algorithm for a particu-

lar image, we simply use various methods to approximate

the methods that may be used inside camera. Since even the

wrong algorithm would still have its own difference pattern.

The whole approximation process (Figure 2) is as fol-

lows. Given an original image imOrig, we first apply white

balance to obtain a new image imNew. We then extract

some Image Quality Metrics (IQM) from imNew as fea-

tures, while outliers are eliminated using sequential back-

ward feature selection (SBS). Finally, SVM classification is

performed to identify the source camera of the given image.

3.2. Feature Extraction

In our experiments, all features come from image qual-

ity metrics (IQM) of the re-balanced images. The under-

lying philosophy is, for re-balanced image, the less change

from re-balancing, the better quality it is , compared to the

original image. This quality metrics thus could be used to

identify the
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Name Number

Mean Absolute Error (MAE) 3

Mean Square Error (MSE) 3

Normalized MSE 3

Peak-Signal-to-Noise Ratio 3

Maximum Difference 3

Czekznowski Correlation 1

Angle Mean 1

Structural Content 3

Correlation Quality 3

HVS real lab distance 1

HVS similarity weight 1

Block Weighted Spectral

Distance (max,mean,median) 3*3
Table 1. Image Quality Metrics used

3.2.1 AWBMethods

For each image, we apply various kinds of AWB methods

based on different assumptions. Since the majority of cam-

eras use gray-world assumption, we apply more variations

of gray-world methods.

• Gray-World: with 6 color adaptation methods;

• White-Patch: with percentage of white set to be

1/255, 0.01, and max-RGB with smoothing;

• Shades-of-gray;

• Gray-Edge (with differentiation order 1 and 2).

The six adaptation methods used in combination with the

Gray-World method are the diagonal (eq.(1)), von Kries,

Bradford, Sharp, CMCCAT2000 and XYZ model [23].

3.2.2 Image Quality Metrics (IQM)

Image quality metrics are used to denote the set of metrics

to evaluate the image quality. To extract these features, we

apply various white balance methods on the input image

imOrig to obtain imNew. Using imOrig as baseline, vari-

ous features [3, 11] are extracted from imNew, see Table 1

for an overview of features used. Note that the number of

features indicate whether a feature is extracted from a full

color image or from RGB channels separately.

To summarize, 12 re-balanced images are obtained by

applying 12 white balance methods on each original image.

Then, for each imNew we extract 34 features (Table 1), re-

sulting in a total of 408 features per image.

3.3. Feature Selection

Feature selection is used to reduce the noise in the fea-

tures and to eliminate outliers. For simplicity and compu-

tational reasons, we use the sequential backward feature se-

lection (SBS) algorithm. This method attempts to optimize

some criterion by removing features from an initial candi-

date feature set. In our implementation, the ensemble of

features of 17 camera models is used as initial candidate

set, and the SVM classifier accuracy is used as optimization

criterion. Since SBS eliminates four features from the ini-

tial set of features, thus in all experiments we use a feature

vector of dimension 404.

3.4. SVM Classifier

We use support vector machine (SVM) of the RBF kernel

to test the effectiveness of our proposed features, with C =
27, γ = 2−7.5. To be specific, we use LibSVM package [7],

since we mainly focus on multiple class identification.

4. Experimental Results and Discussions

In our experiments, we first perform camera identifica-

tion over cameras of different brand. Then we test all 17

models available in the database, with some models similar

with each other. At the end, we test with images coming

from different devices of the same model.

4.1. Database Used

In our experiments, images come from ‘Dresden Image

Database’ [18], and we use all the camera devices available

in the database, up to 29 cameras devices, with 17 models,

and 8 brands (Table 2). We use only the first 169 images

for each camera device, as this is the minimum number of

images available per device.

The main reason that we use this database is that, almost

every camera takes a picture of the same scene, and under

the same lighting condition. Although it would be harder

for classification, that is exactly what source camera identi-

fication is about (imagine two persons arguing the copyright

of an image).

Note all images we use are in JPEG format, and each

time, we randomly choose 60% images as training sam-

ples and the rest 40% for testing, unless otherwise explic-

itly mentioned. Further, all classification accuracies listed

in this paper are the average of 250 running results.

Brand Model Alias Brand Model Alias

Agfa

DC-504 A1

Nikon

D70 N1

DC-733s A2 D70S N2

DC-830i A3 D200 N3

505-x A4 S710 N0i
530s A5 Rollei 325XS R1

Canon

Ixus55 C1 Olympus µ1050SW O1

Ixus70 C2 Casio EX-Z150 S0i
A640 C3 FujiFilm J50 F1

Kodak M1063 K0i - - -
Table 2. Camera Models and Resolutions (First letter as brand ID,

second number as model ID and subindex as device ID)
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\ C2 S0 K0 N3 N1 O1 A1 R1 F1 C3

C2 99.0 0.10 0.38 - - 0.01 0.22 0.24 0.09 -

S0 0.03 99.3 - 0.01 0.16 0.12 0.01 0.09 0.28 -

K0 0.04 0.09 99.1 0.04 0.62 0.06 - 0.03 0.06 -

N3 - 0.01 - 99.8 0.07 0.07 0.06 0.01 - -

N1 - 0.35 0.04 0.31 99.2 0.07 - 0.03 0.01 -

O1 0.53 0.06 - 0.15 0.06 98.9 0.25 0.04 0.01 -

A1 0.03 - - - - 0.07 99.3 0.46 0.16 -

R1 0.12 - - 0.03 0.01 0.12 - 99.4 0.32 0.01

F1 0.03 - 0.06 - 0.40 0.09 - 0.26 99.1 0.04

C3 - - - - - - - 0.13 0.15 99.7
Table 3. Confusion Matrix for 10 Camera Identification(for

S00,K00, we omit subindex for simplicity)

For camera model having only one device, we omit the

device ID. For ‘Kodak M1063’, ‘Nikon CoolPixS710’ and

‘Casio EX-Z150’, we have five camera devices, we use

subindex i = 0, 1, ..., 4 to identify device 0 to 4, and omit-

ting their device ID indicates device 0.

4.2. Cameras of Different Brands

For feature based camera model identification, Gloe et

al. [19] did a comprehensive evaluation on existing best per-

forming methods using the same forensic database.

Our initial design uses 8 cameras from different brands,

but to be more comparable and convincing, we include two

additional cameras A4 and C3, thus replicate the setting of

naive test from [19]. (Note: since image data from 3 Sam-

sung cameras are not available, we replace them by those

from camera A1, F1, C3.)
Experiments show that the average classification accu-

racy is 99.26%, the lowest running as 98.38%, and the high-

est as 100%. Detailed results are shown in Table 3, where

the left most column is the true source camera while the top

row is the predicted result, and each entry is the prediction

percentage. In this experiment, Gloe et al. [19] reports an

overall correct model identification performance of 97.79%,

where our performance is 99.26%. Further, Table 3 shows

no specific camera model performs considerably worse than

others.

4.3. Cameras of Different Models

In the second experiment, we evaluate the performance

over all 17 models in ’Dresden Image Database’. The aver-

age predicting accuracy is 98.61%, with lowest running as

96.97%, and the highest as 99.57% (Table 4).

From these experiments, we can observe that the pro-

posed method can distinguish among camera models as well

as camera brands. Moreover, the proposed method scales

well for an increasing number of different cameras.

These results can be explained as follows. First, as the

feature vectors are derived from the image quality metrics,

Camera Accuracy Camera Accuracy

A1 99.1529 C1 98.6588

A2 97.5059 C2 97.0765

A3 98.5118 C3 99.5529

A4 98.6706 R1 99.2882

A5 97.9059 N1 98.0824

S0 98.9353 N2 97.8647

F1 99.0941 N3 99.8353

K0 98.8000 N0 98.8118

O1 98.6529 - -
Table 4. Prediction percentage for all available 17 cameras of dif-

ferent models

S00 S01 S02 S03 S04
S00 99.12 0.58 - 0.31 -

S01 0.10 98.72 0.30 0.62 0.25

S02 0.41 0.41 98.12 0.44 0.62

S03 0.09 0.27 0.35 99.25 0.04

S04 0.55 0.39 1.12 0.30 97.65
Table 5. Confusion Matrix for 5 devices of ‘Casio EX-Z150’ Iden-

tification

they are inherently consistent with each other, which is also

reflected in the result of the SBS feature selection method,

which eliminates only four features. Second, all white bal-

ancing methods are based on the gray-world assumption,

which is considered to be the most often used method in-

side digital cameras. Finally, it is likely that white balanc-

ing is the at the end of the digital image processing (DIP)

pipeline, thus the proposed method does not suffer the side

effects from other processes applied inside the DIP.

4.4. Cameras of the Same Model

Currently, the most challenging problem of camera iden-

tification is to distinguish among camera devices of the

same model. The next experiment will follow the exper-

imental setup of [18] to evaluate the intra-camera perfor-

mance over 5 devices of model ‘Casio EX-Z150’. By ran-

domly choosing 60% images for training, we have an aver-

age accuracy of 98.57%, with the lowest running accuracy

being 96.47%, and the highest being 100%. Similarly iden-

tification over 5 camera devices from ‘Kodak M1063’ gives

an average accuracy of 98.47% and ‘Nikon CoolPixS710’

of 98.78%.

These results (Table 5) clearly depict that even for de-

vices of the same model, our proposed method can correctly

identify the source camera of a given image.

To explain this, we did more investigations. First, for

‘Nikon CoolPixS710‘ , if we open images ‘ 1 13228.JPG’

and ‘ 2 13645.JPG’, ( ‘ 1 ‘ and ‘ 2 ‘ are device ID), we

could find that the image from device 1 is brighter than that

from device 2, even their content are the same. This ob-

servation holds for all images having the same scene from
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File Name
Exposure

AFPoint
AFPoints Relative

Time InFocus AF-Position

0 12830 1/400 sec 3 8 Mid-left

1 13228 1/400 sec 4 16 Mid-right

2 13645 1/400 sec 0 1 center

3 14082 1/320 sec 8 256 Lower-right

4 14500 1/320 sec 3 8 Mid-right
Table 6. Device difference among ‘Nikon CoolPixS710’ (0,1,2,3,4

are device ID, and AF is Auto-Focus)

these two devices, even though they are taken at the same

time and under the same lighting condition.

Next, by checking their ‘MakerNotes’, we find that the

selected auto-focus position varies between devices, even

they are of the same model (Table 6). We believe that the

trivial differences like this, cause the differences in scene

illumination estimation process, and finally affect the output

images. To better understand how these differences affect

the feandatures extracted, we reduce the dimension to 2 by

principle component analysis (PCA) (Figure 3).
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Figure 3. Comparison of device 0 against other 4 devices from

model ‘Casio EX-Z150’ (Red squares represent images from de-

vice 0)

To be more general, we also did the test over all 29 cam-

era devices listed in Table 2, with 60% images for training,

experiment gives an average accuracy of 98.10%, with the

lowest running as 96.55%, and the highest as 99.04%. Due

to the use of a huge number of camera devices including 15

devices out of 3 camera models, the performance degrades

a little, but it is still acceptable.

5. Robustness Analysis

To test the robustness of our method, we expose the im-

ages to several most common manipulations.

5.1. Robustness over Double JPEG Compression

Practically almost all digital cameras on market use

JPEG compression to store the images. When someone

modifies an image afterwards, the result is saved with JPEG

compression again, resulting in double JPEG compression.

To test whether our proposed method would be resistant

to double JPEG compression, we compressed the original

JPEG image again with 75% quality metric. To analyze

the robustness of the proposed approach, we used the same

experimental setup as the first experiment in section 4.2.

Training is performed on 60% of the original images; while

testing is performed using the rest images that are double

JPEG compressed.

Experiment shows the average prediction accuracy is

89.90%. Compared with the 99.14% for original accuracy,

the performance decreased a lot. When only 5 cameras are

used, the prediction accuracy is still 98.40%, while its orig-

inal accuracy is 99.24%.

This experiment proved that double JPEG compression

disturbs the consistency of image quality characters. When

the number of camera devices grows larger, especially with

cameras of close models, prediction accuracy decreases a

lot.

5.2. Robustness over Noise

Every digital camera would introduce some noise to its

captured images, such as noises from sensor dust, from dead

pixels on sensor etc. , and these noises tend to change as

time passes.

To make sure that images from a camera taken 3 years

ago could be classified into the same class with those taken

today, we redo the first experiment. First, we add Gaussian

white noise of mean zero and variance 0.01 to the original

images. Similarly, 60% original images are used for train-

ing, and when testing, we use the rest images with noise

added.

The average prediction accuracy is 97.79%, with the

lowest accuracy as 94.12%, and the highest accuracy as

99.41% . From the experiment, we can assert that our

method is robust to white Gaussian noise, and thus, images

taken 3 years ago would still be classified into the same cat-

egory with those taken today.

5.3. Resistance over Resizing

Resizing an image is a common operation in image ma-

nipulation. To test the resistance over resizing, we also redo

the first experiment.

At the beginning, we resize original images to its 1/2
images with ‘bi-cubic’ interpolation. When testing, we use

features from their resized images. (Note: our images ‘orig-

inal‘ image are already 1/4 resized.) Experiment gives only

75.61% prediction correctness, indicating much more dis-

turbance in features.
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But this low accuracy could be overcomed by using the

resized image for training. In that way, the average accu-

racy turns to be 98.59%, which means that re-sampling op-

eration, not simply disturbing the feature, but transfers fea-

tures into the same direction, thus features still consistent

with each other. For example, if we perform the resizing

on any image in database, and compare their max and min

value on each channel, we will found that resized image

tends to have significantly larger min and max values.

Therefore, given target images been re-sampled, using

their same sized images would give acceptable authentifica-

tion result.

6. Conclusions

In this paper, we propose a novel method to identify the

source camera by using the AWB residue pattern. Experi-

mental results on a large-scale data set show the proposed

method is very effective. Moreover, the prediction accuracy

almost does not degrade as the number of different cam-

eras increases, demonstrating the scalability of the proposed

method. Finally, we show that even for different devices of

the same model and brand, the proposed method is still able

to distinguish among them.

Although we only do the source camera identification,

the same idea could be applied to various applications, in-

cluding but not limited to copy-move detection and ste-

ganalysis, as well as reverse engineering.
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Appendix

In this section, we give brief descriptions of some im-

age quality features in Table 1. Given an original RGB

image C(i, j, k) of size M-by-N, where i = 1, 2, ...,M ,

j = 1, 2, ..., N and k = 1, 2, 3 indicating its color plane.

And Ĉ(i, j, k) stands for its re-balanced image.

A. Minkowsky Metrics

Minkowsky metrics (M) could be used to assess the simi-

larity of two images, by averaging the pixel-by-pixel differ-

ence.

Mγ(k) =







1

M ∗N

M,N
∑

i=1,j=1

|C(i, j, k)− Ĉ(i, j, k)|γ






1/γ

(1)

γ = 1 corresponds to Mean Absolute Error (MAE), γ = 2
corresponds to rooted Mean Square Error (RMSE), mean-

ing that MSE(k) = RMSE2(k). When γ = +∞, we

actually get the Maximum Difference.

To get the Normalized Mean Square Error (NMSE), we

normalize the square error by the quadratic of the baseline

image.

NMSE(k) =
M ∗N ∗MSE(k)

∑M
i=1

∑N
j=1 C

2(i, j, k)
(2)

Similarly, Peak Signal to Noise Ratio(PSNR) is actually

the reciprocal of RMSE, and scaled by its logarithm.

PSNR(k) = 20 ∗ log10
255

RMSE(k)
(3)

B. Correlation Metrics

Another types of metrics, focused on non-negative compo-

nents, is the Czekanowski Correlation (CC) [3].

CC = 1−
2 ∗∑M,N

i=1,j=1

∑3
k=1 min

(

C(i, j, k), Ĉ(i, j, k)
)

∑M,N
i=1,j=1

∑3
k=1

(

C(i, j, k) + Ĉ(i, j, k)
)

(4)

Another correlation based metric is the Angle Mean

(AM), assuming at position (i,j), the RGB values of image

C is denoted by bold character C(i,j) as a 3-D vector.

AM = 1− 1

M ∗N

M,N
∑

i=1,j=1

2

π

〈

C(i, j), Ĉ(i, j)
〉

||C(i, j)|| ∗ ||Ĉ(i, j)||
(5)

Similarly, Correlation Qualities (CQ) and Structural

Contents (SC) are

CQ(k) =

∑M,N
i=1,j=1 C(i, j, k) ∗ Ĉ(i, j, k)

∑M,N
i=1,j=1 C

2(i, j, k)
(6)

SC(k) =

∑M,N
i=1,j=1 C

2(i, j, k)
∑M,N

i=1,j=1 Ĉ
2(i, j, k)

(7)

C. Quality Metrics in Frequency Domain

Median Block Weighted metrics are calculated by first do-

ing discrete Fourier transform, extracting their weighted

metrics for each block, and then use the max, mean, me-

dian value as potential feature[11].

Finally, to get Human Visual System (HVS) based met-

rics, users need first transform image data into HVS mdoel,

details could be found in [16].
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